The propagation of waves through a structure with a periodic modulation on the length scale of the wavelength is profoundly different from that of the homogeneous case. This is well known in solid state physics where the periodicity is responsible for the formation of energy bands and energy gaps of electron states in metal, semiconductor, and insulator crystals. Recently, there is also a lot of interest in the propagation of classical waves (electromagnetic, elastic) in inhomogeneous media with a periodic structuring on a macroscopic scale.

Photonic crystals are composite materials with a permittivity or/and a permeability which is a periodic function of the position, with a period comparable to the wavelength of light. A most interesting aspect of such materials arises from the possibility of frequency regions, known as photonic gaps, over which there can be no propagation of light in the crystal whatever the direction of propagation; a phenomenon which can have many and important applications in optoelectronics. In relation to basic physics, photonic crystals are interesting in a number of ways. For example, they can be the starting point in a process of gradual introduction of disorder and a study of consequent phenomena, including Anderson localization. Among the methods suggested for the calculation of photonic bands, the so-called on-shell methods appear to be numerically efficient and at the same time allow the calculation of the transmission, reflection, and absorption coefficients of light, of given frequency, incident on a slab of the photonic crystal. The on-shell methods apply equally well to non-absorbing systems and to absorbing ones; they can also deal with systems containing strongly dispersive materials such as real metals. Such a method, and a powerful computer program for its implementation, has been developed by our group.

Band formation in periodic structures also pertains to elastic wave propagation. Composite materials with elastic coefficients which are periodic functions of the position are known as phononic crystals and have properties which mirror those of photonic crystals and corresponding applications too. With an appropriate choice of the parameters involved one may obtain phononic crystals with absolute frequency gaps in selected regions of frequency. An elastic wave, whose frequency lies within an absolute gap of a phononic crystal, will be completely reflected by it; from which follows the possibility of constructing non-absorbing mirrors of elastic waves and vibration-free cavities which might be useful in high-precision mechanical systems operating in a given frequency range. And in relation to basic physics, one can use elastic waves to study phenomena such as those associated with disorder, in more or less the same manner as with electromagnetic waves. An on-shell method for the calculation of frequency bands and transmission coefficients of phononic crystals, and a computer program for its implementation, has been developed by our group.

Our current research activities in the field of classical wave propagation in inhomogeneous media include: metallodielectric and polaritonic photonic crystals, waveguiding of electromagnetic and elastic waves, effects of disorder in photonic and phononic crystals, plasmonics, metamaterials, spontaneous emission in photonic nanostructures, acousto-optic interactions in phoxonic cavities, chiral composites, magnetophotonic and magnetoplasmonic crystals, etc...

Publications in refereed journals

1. Scattering of light by a two-dimensional array of spherical particles on a substrate
N. Stefanou and A. Modinos, J. Phys.: Condens. Matter 3, 8135 (1991)
2. Optical properties of thin discontinuous metal films
N. Stefanou and A. Modinos, J. Phys.: Condens. Matter 3, 8149 (1991).
3. Optical properties of a two-dimensional array of metallic spheres on a substrate
A. Modinos and N. Stefanou, Acta Physica Polonica A 81, 91 (1992).
4. Light scattering by non-spherical plasma particles
V. Karathanos, A. Modinos, and N. Stefanou, J. Physique I 2, 1279 (1992)
5. Scattering of electromagnetic waves by periodic structures
N. Stefanou, V. Karathanos, and A. Modinos, J. Phys.: Condens. Matter 4, 7389 (1992)
6. Optical properties of layers and crystals of spherical particles
A. Modinos, V. Karathanos, and N. Stefanou, Appl. Surf. Sci. 65-66, 13 (1993)
7. Scattering of electromagnetic waves by a disordered two-dimensional array of spheres
N. Stefanou and A. Modinos, J. Phys.: Condens. Matter 5, 8859 (1993)
8. Planar defects in photonic crystals
V. Karathanos, A. Modinos, and N. Stefanou, J. Phys.: Condens. Matter 6, 6257 (1994)
9. Optical activity of photonic crystals
V. Karathanos, N. Stefanou, and A. Modinos, J. Mod. Opt. 42, 619 (1995)
10. Localized electromagnetic modes in nonlinear superlattices
A. Modinos and N. Stefanou, Phys. Rev. B 54, 16452 (1996)
11. Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals
V. Yannopapas, N. Stefanou, and A. Modinos, J. Phys.: Condens. Matter 9, 10261 (1997)
12. Inactive frequency bands in photonic crystals
V. Karathanos, J. Mod. Opt. 45, 1751 (1998)
13. Impurity bands in photonic insulators
N. Stefanou and A. Modinos, Phys. Rev. B 57 , 12127 (1998)
14. Heterostructures of photonic crystals: frequency bands and transmission coefficients
N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998)
15. Photonic crystals of chiral spheres
I. E. Psarobas, N. Stefanou, and A. Modinos, J. Opt. Soc. Am. A 16, 343 (1999)
16. Effective-medium description of dielectric-chiral photonic crystals
I. E. Psarobas, Opt. Commun. 162, 21 (1999)
17. Optical properties of metallodielectric photonic crystals
V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 60, 5359 (1999)
18. Scattering of electromagnetic waves by nearly periodic structures
A. Modinos, V. Yannopapas, and N. Stefanou, Phys. Rev. B 61, 8099 (2000)
19. Scattering of elastic waves by periodic arrays of spherical bodies
I. E. Psarobas, N. Stefanou, and A. Modinos, Phys. Rev. B 62, 278 (2000)
20. Phononic crystals with planar defects
I. E. Psarobas, N. Stefanou, and A. Modinos, Phys. Rev. B 62, 5536 (2000)
21. MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals
N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 132, 189 (2000)
22. On wave propagation in inhomogeneous systems
A. Modinos, N. Stefanou, I. E. Psarobas, and V.Yannopapas, Physica B: Condens. Matter 296, 167 (2001)
23. Applications of the layer-KKR method to photonic crystals
A. Modinos, N. Stefanou, and V. Yannopapas, Opt. Express 8, 197 (2001)
24. Optical transparency of mesoporous metals
N. Stefanou, A. Modinos, and V. Yannopapas, Solid State Commun. 118, 69 (2001)
25. Effect of stacking faults on the optical properties of inverted opals
V. Yannopapas, N. Stefanou, and A. Modinos, Phys. Rev. Lett. 86, 4811 (2001)
26. Viscoelastic response of sonic band-gap materials
I. E. Psarobas, Phys. Rev. B 64, art. no. 012303 (2001)
27. Scattering and absorption of light by periodic and nearly periodic metallodielectric structures
V. Yannopapas, A. Modinos, and N. Stefanou, Opt. Quant. Electron. 34, 227 (2002)
28. Acoustic Properties of Colloidal Crystals
I. E. Psarobas, A. Modinos, R. Sainidou, and N. Stefanou, Phys. Rev. B 65, art. no. 064307 (2002)
29. Waveguides of defect chains in photonic crystals
V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, art. no. 235201 (2002)
30. Scattering of elastic waves by a periodic monolayer of spheres
R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, Phys. Rev. B 66, art. no. 024303 (2002)
31. Elastic band gaps in a fcc lattice of mercury spheres in aluminum
I. E. Psarobas and M. M. Sigalas, Phys. Rev. B 66, art. no. 052302 (2002)
32. Formation of absolute frequency gaps in three-dimensional solid phononic crystals
R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 66, art. no. 212301 (2002)
33. Anderson localization of light in inverted opals
V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 68, art. no. 193205 (2003)
34. Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis
V. Yannopapas and N. Stefanou, Phys. Rev. B 69, art. no. 012408 (2004)
35. Green's function formalism for phononic crystals
R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 69, art. no. 064301 (2004)
36. A layer-multiple-scattering method for phononic crystals and heterostructures of such
R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, Comput. Phys. Commun. 166, 197 (2005)
37. Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide
G. Gantzounis, N. Stefanou, and V. Yannopapas, J. Phys.: Condens. Matter 17, 1791 (2005)
38. Widening of phononic transmission gaps via Anderson localization
R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. Lett. 94, art. no. 205503 (2005)
39. Theoretical analysis of three-dimensional polaritonic photonic crystals
G. Gantzounis and N. Stefanou, Phys. Rev. B 72, art. no. 075107 (2005)
40. Scattering of light by a periodic array of metallic nanoparticles on a waveguide
N. Stefanou, G. Gantzounis, and V. Yannopapas, J. Phys.: Conf. Series 10, 131 (2005)
41. Classical vibrational modes in phononic lattices: theory and experiment
M. M. Sigalas, M. S. Kushwaha, E. N. Economou, M. Kafesaki, I. E. Psarobas, and W. Steurer, Z. Kristallogr. 220, 765 (2005)
42. Photonic crystals: a novel class of functional materials
A. Modinos and N. Stefanou, Mat. Sci. (Poland) 23, 877 (2005)
43. The layer multiple-scattering method applied to phononic crystals
R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, Z. Kristallogr. 220, 848 (2005)
44. Layer-multiple-scattering method for photonic crystals of nonspherical particles
G. Gantzounis and N. Stefanou, Phys. Rev. B 73, art. no. 035115 (2006)
45. Guided and quasiguided elastic waves in phononic crystal slabs
R. Sainidou and N. Stefanou, Phys. Rev. B 73, art. no. 184301 (2006)
46. Low-frequency absolute gaps in the phonon spectrum of macrostructured elastic media
N. Stefanou, R. Sainidou, and A. Modinos, Rev. Adv. Mater. Sci. 12, 46 (2006)
47. Cavity-plasmon waveguides: Multiple scattering calculations of dispersion in weakly coupled dielectric nanocavities in a metallic host material
G. Gantzounis and N. Stefanou, Phys. Rev. B 74, art. no. 085102 (2006)
48. Observation and tuning of hypersonic bandgaps in colloidal crystals
W. Cheng, J. Wang, U. Jonas, G. Fytas, and N. Stefanou, Nature Mater. 5, 830 (2006)
49. Linear chain of weakly coupled defects in a three-dimensional phononic crystal: A model acoustic waveguide
R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 74, art. no. 172302 (2006)
50. Hypersonic acoustic excitations in binary colloidal crystals: Big versus small hard sphere control
G. Tommaseo, G. Petekidis, W. Steffen, G. Fytas, A.B. Schofield, and N. Stefanou, J. Chem. Phys. 126, art. no. 014707 (2007)
51. Propagation of electromagnetic waves through microstructured polar materials
G. Gantzounis and N. Stefanou, Phys. Rev. B 75, art. no. 193102 (2007)
52. Elastic properties and glass transition of supported polymer thin films
W. Cheng, R. Sainidou, P. Burgardt, N. Stefanou, A. Kiyanova, M. Efremov, G. Fytas, and P. F. Nealey, Macromolecules 40, 7283 (2007)
53. Tight-binding description of single-mode cavity-plasmon waveguides in the frequency and time domain
G. Gantzounis and N. Stefanou, J. Phys.: Condens. Matter 20, 015202 (2008)
54. Optical properties of periodic structures of metallic nanodisks
G. Gantzounis, N. Stefanou, and N. Papanikolaou, Phys. Rev. B 77, art. no. 035101 (2008)
55. Collective plasmonic modes in ordered assemblies of metallic nanoshells
C. Tserkezis, G. Gantzounis, and N. Stefanou, J. Phys.: Condens. Matter 20, 075232 (2008)
56. Simultaneous occurrence of structure-directed and particle resonance-induced phononic gaps in colloidal films
T. Still, W. Cheng, M. Retsch, R. Sainidou, J. Wang, U. Jonas, N. Stefanou, and G. Fytas, Phys. Rev. Lett. 100, art. no. 194301 (2008)
57. Calculations of the optical response of metallo-dielectric nanostructures of non-spherical particles by a layer-multiple-scattering method
N. Papanikolaou, G. Gantzounis, and N. Stefanou, Proc. SPIE 6988, 69881D (2008)
58. Plasmonic excitations in ordered assemblies of metallic nanoshells
N. Stefanou, C. Tserkezis, and G. Gantzounis, Proc. SPIE 6989, 698910 (2008)
59. Optical properties of two-dimensional periodic arrays of metallodielectric nanosandwiches
N. Papanikolaou, G. Gantzounis, and N. Stefanou, Phys. Stat. Sol. (c) 5, 3701 (2008)
60. Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures
C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, Phys. Rev. B 78, art. no. 165114 (2008)
61. Multiple-scattering calculations for plasmonic nanostructures
N. Stefanou, G. Gantzounis, and C. Tserkezis, Int. J. Nanotechnol. 6, 137 (2009)
62. Negative effective permeability of multilayers of ordered arrays of metal-dielectric nanosandwiches
C. Tserkezis, N. Stefanou, G. Gantzounis, and N. Papanikolaou, Proc. SPIE 7353, 735305 (2009)
63. Effective parameters for periodic photonic structures of resonant elements
C. Tserkezis, J. Phys.: Condens. Matter 21, 155404 (2009)
64. Tailoring plasmons with metallic nanorod arrays
C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, Phys. Rev. B 80, art. no. 125124 (2009)
65. Retrieving local effective constitutive parameters for anisotropic photonic crystals
C. Tserkezis and N. Stefanou, Phys. Rev. B 81, art. no. 115112 (2010)
66. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals
N. Papanikolaou, I.E. Psarobas, and N. Stefanou, Appl. Phys. Lett. 96, art. no. 231917 (2010)
67. Plasmonic nanostructures and optical metamaterials: Studies by the layer-multiple-scattering method
N. Stefanou, N. Papanikolaou, and C. Tserkezis, Physica B: Condens. Matter 405, 2967 (2010)
68. Effective optical parameters of thin-film and bulk metamaterials of metallodielctric nanosandwiches
C. Tserkezis, N. Stefanou, and N. Papanikolaou, Opt. Commun. 283, 4074 (2010)
69. Uniaxial crystals of metallodielectric nanosandwiches: Effective optical parameters and negative refraction
C. Tserkezis, and N. Stefanou, J. Opt. 12, 115103 (2010)
70. Versatile phononic slabs
I. E. Psarobas, IUTAM Bookseries 26 Part 3, 175 (2010)
71. Extraordinary refractive properties of photonic crystals of metallic nanorods
C. Tserkezis, N. Stefanou, and N. Papanikolaou, J. Opt. Soc. Am. B 27, 2620 (2010)
72. Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity
I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, Phys. Rev. B 82, art. no. 174303 (2010)
73. Collective hypersonic excitations in strongly multiple scattering colloids
T. Still, G. Gantzounis, D. Kiefer, G. Hellmann, R. Sainidou, G. Fytas, and N. Stefanou, Phys. Rev. Lett. 106, art. no. 175505 (2011)
74. PhoXonic architectures for tailoring the acousto-optic interaction
N. Papanikolaou, I. E. Psarobas, G. Gantzounis, E. Almpanis, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude, and A. Martinez, Proc. SPIE 8071, 80710Z (2011)
75. Multiple-scattering calculations for layered phononic structures of nonspherical particles
G. Gantzounis, N. Papanikolaou, and N. Stefanou, Phys. Rev. B 83, art. no. 214301 (2011)
76. Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles
A. Christofi, N. Stefanou, and G. Gantzounis, Phys. Rev. B 83, art. no. 245126 (2011)
77. Spiral-staircase photonic structures of metallic nanorods
A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, Phys. Rev. B 84, art. no. 125109 (2011)
78. Photonic surface states in plasmonic crystals of metallic nanoshells
C. Tserkezis, N. Stefanou, G. Gantzounis, and N. Papanikolaou, Phys. Rev. B 84, art. no. 115455 (2011)
79. Nonlinear interactions between high-Q optical and acoustic modes in dielectric particles
G. Gantzounis, N. Papanikolaou, and N. Stefanou, Phys. Rev. B 84, art. no. 104303 (2011)
80. Negative refraction in plasmonic crystals of metallic nanoshells
C. Tserkezis and N. Stefanou, Metamaterials 5, 169 (2011)
81. Dynamically tuned zero-gap phoXonic systems
I. E. Psarobas and V. Yannopapas, Proc. SPIE 8346, 83460K (2012)
82. Optical modes of chiral photonic composites
A. Christofi, N. Stefanou, and S. Thanos, Microelectron. Eng. 90, 152 (2012)
83. Light modulation in phoxonic nanocavities
N. Papanikolaou, I.E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, Microelectron. Eng. 90, 155 (2012)
84. Calculation of waveguide modes in linear chains of metallic nanorods
C. Tserkezis and N. Stefanou, J. Opt. Soc. Am. B 29, 827 (2012)
85. Photonic structures of metal-coated chiral spheres
A. Christofi and N. Stefanou, J. Opt. Soc. Am. B 29, 1165 (2012)
86. Helical assemblies of plasmonic nanorods as chiral metamaterials
A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, Proc. SPIE 8423, 84230A (2012)
87. Acousto-optic interaction enhancement in dual photonic-phononic cavities
N. Papanikolaou, E. Almpanis, G. Gantzounis, and N. Stefanou, Proc. SPIE 8425, 84250M (2012)
88. Giant optical activity of helical architectures of plasmonic nanorods
A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, J. Phys. Chem. C 116, 16674 (2012)
89. Tuning the spontaneous light emission in phoxonic cavities
E. Almpanis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, J. Opt. Soc. Am. B 29, 2567 (2012)
90. Diffractive chains of plasmonic nanolenses: Combining near-field focusing and collective enhancement mechanisms
E. Almpanis, N. Papanikolaou, B. Auguié, C. Tserkezis, and N. Stefanou, Opt. Lett. 37, 4624 (2012)
91. Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field
A. Christofi and N. Stefanou, Phys. Rev. B 87, art. no. 115125 (2013)
92. Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres
A. Christofi and N. Stefanou, Phys. Rev. B 88, art. no. 125133 (2013)
93. Strong magnetochiral dichroism of helical structures of garnet particles
A. Christofi and N. Stefanou, Opt. Lett. 38, 4629 (2013)
94. Birefringent phononic structures
I. E. Psarobas, D. A. Exarchos, and T. E. Matikas, AIP Advances 4, art. no. 124307 (2014)
95. Layer multiple scattering calculations for nonreciprocal photonic structures
A. Christofi and N. Stefanou, Int. J. Mod. Phys. B 28, art. no. 1441012 (2014)
96. Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement
A. Christofi, N. Stefanou, and N. Papanikolaou, Phys. Rev. B 89, art. no. 214410 (2014)
97. Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures
A. Christofi, C. Tserkezis, and N. Stefanou, J. Quant. Spectrosc. Radiat. Transfer 146, 34 (2014)
98. Nonreciprocal guided modes in photonic crystals of magnetic garnet particles with a planar defect
A. Christofi, and N. Stefanou, J. Opt. Soc. Am. B 31, 2104 (2014)
99. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities
E. Almpanis, N. Papanikolaou, and N. Stefanou, Opt. Express 22, 31595 (2014)
100. Chiral phononic structures
I. E. Psarobas, D. A. Exarchos, and T. E. Matikas, Proc. SPIE 9436, 94360Q (2015)
101. Strong circular dichroism of core-shell magnetoplasmonic nanoparticles
P. Varytis, N. Stefanou, A. Christofi, and N. Papanikolaou, J. Opt. Soc. Am. B 32, 1063 (2015)
102. The three-dimensional phononic crystals
B. Assouar, R. Sainidou, and I. E. Psarobas, Phononic Crystals: Fundamentals and Applications Chapter 3, 51 (2015)
103. Silver-coated metallic and dielectric magnetic nanospheres: Localized surface plasmons and circular dichroism
P. Varytis and N. Stefanou, Opt. Commun. 360, 40 (2016)
104. Dual photonic-phononic nanocavities for tailoring the acousto-optic interaction
N. Papanikolaou, E. Almpanis, G. Gantzounis, A. Christofi, L. Athanasekos, and N. Stefanou, Microelectron. Eng. 159, 80 (2016)
105. Plasmon-driven large Hall photon currents in light scattering by a core-shell magnetoplasmonic nanosphere
P. Varytis and N. Stefanou, J. Opt. Soc. Am. B 33, 1286 (2016)
106. Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles
P. Varytis, P. A. Pantazopoulos, and N. Stefanou, Phys. Rev. B 93, 214423 (2016)
107. Molecular fluorescence enhancement in plasmonic environments: Exploring the role of nonlocal effects
C. Tserkezis, N. Stefanou, M. Wubs, and N. A. Mørtensen, Nanoscale 8, 17532 (2016)
108. Phononic crystals of poroelastic spheres
A. Alevizaki, R. Sainidou, P. Rembert, B. Morvan, and N. Stefanou, Phys. Rev. B 94, 174306 (2016)
109. Metal-nanoparticle arrays on a magnetic garnet film for tunable plasmon-enhanced Faraday rotation
E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, J. Opt. Soc. Am. B 33, 2609 (2016)
110. Slow-photon enhancement of dye sensitized TiO2 photocatalysis
A. Toumazatou, M. K. Arfanis, P. A. Pantazopoulos, A. G. Kontos, P. Falaras, N. Stefanou, and V. Likodimos, Mater. Lett. 197, 123 (2017)
111. Acoustic properties of double-porosity granular polymers
A. Alevizaki, R. Sainidou, P. Rembert, B. Morvan, and N. Stefanou, Phys. Rev. B 95, 214306 (2017)
112. A birefringent etalon enhances the Faraday rotation of thin magneto-optical films
E. Almpanis, P. A. Pantazopoulos, N. Papanikolaou, V. Yannopapas, and N. Stefanou, J. Opt. 19, 075102 (2017)
113. Photomagnonic nanocavities for strong light–spin wave interaction
P. A. Pantazopoulos, N. Stefanou, E. Almpanis, and N. Papanikolaou, Phys. Rev. B 96, 104425 (2017)
114. Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial
A. Christofi and N. Stefanou, Phys. Rev. B 97, 125129 (2018)
115. Strong magnetochiral dichroism in chiral/magnetic layered heterostructures
A. Christofi, Opt. Lett. 43, 5741 (2018)
116. Tailoring coupling between light and spin waves with dual photonic–magnonic resonant layered structures
P. A. Pantazopoulos, N. Papanikolaou, and N. Stefanou, J. Opt. 21, 015603 (2019)
117. Layered optomagnonic structures: Time Floquet scattering-matrix approach
P. A. Pantazopoulos and N. Stefanou, Phys. Rev. B 99, 144415 (2019); Phys. Rev. B 101, 209903(E) (2020)
118. High-efficiency triple-resonant inelastic light scattering in planar optomagnonic cavities
P. A. Pantazopoulos, K. L. Tsakmakidis, E. Almpanis, G. P. Zouros, and N. Stefanou, New J. Phys. 21, 095001 (2019)
119. Elastodynamic response of three-dimensional phononic crystals using laser Doppler vibrometry
I. K. Tragazikis, D. A. Exarchos, P. T. Dalla, K. Dassios, T. E. Matikas, and I. E. Psarobas, J. Phys. D: Appl. Phys. 52, 285305 (2019)
120. Nanographene oxide–TiO2 photonic films as plasmon-free substrates for surface-enhanced Raman scattering
D. Papadakis, A. Diamantopoulou, P. A. Pantazopoulos, D. Palles, E. Sakellis, N. Boukos, N. Stefanou, and V. Likodimos, Nanoscale 11, 21542 (2019)
121. Scattering by a magnetized cold plasma body
G. P. Zouros, G. D. Kolezas, N. Stefanou, and J. A. Roumeliotis, Proceedings of the ICEAA 2019 : Art. No. 8879315, pp. 596-599 (2019)
122. Spherical optomagnonic microresonators: Triple-resonant photon transitions between Zeeman-split Mie modes
E. Almpanis, G. P. Zouros, P. A. Pantazopoulos, K. L. Tsakmakidis, N. Papanikolaou, and N. Stefanou, Phys. Rev. B 101, 054412 (2020)
123. Planar optomagnonic cavities driven by surface spin waves
P. A. Pantazopoulos and N. Stefanou, Phys. Rev. B 101, 134426 (2020)
124. Multipolar interactions in Si sphere metagratings
E. Panagiotidis, E. Almpanis, N. Stefanou, and N. Papanikolaou, J. Appl. Phys. 128, 093103 (2020)
125. Light scattering by a spherical particle with a time-periodic refractive index
I. Stefanou, P. A. Pantazopoulos, and N. Stefanou, J. Opt. Soc. Am. B 38, 407 (2021)
126. Tailoring the interaction of light with static and dynamic magnetization fields in stratified nanostructures
P. A. Pantazopoulos and N. Stefanou, in Optomagnonic Structures: Novel Architectures for Simultaleous Control of Light and Spin Waves, Chapter 1, pp. 1-77 (2021)
127. EBCM for electromagnetic modeling of gyrotropic BoRs
G. P. Zouros, G. D. Kolezas, N. Stefanou, and T. Wriedt, IEEE Trans. Antennas Propag. 69, 6934 (2021)
128. Tunable multidispersive bands of inductive origin in piezoelectric phononic plates
K. Mekrache, R. Sainidou, P. Rembert, N. Stefanou, and B. Morvan, J. Appl. Phys. 130, 195106 (2021)
129. Nonspherical optomagnonic resonators for enhanced magnon-mediated optical transitions
E. Almpanis, N. Papanikolaou, and N. Stefanou, Phys. Rev. B 104, 214429 (2021)
130. Nonreciprocal acoustic transmission through dynamic multilayer structures
A. Paliovaios and N. Stefanou, Phys. Rev. B 106, 024101 (2022)
131. Inelastic light scattering from a dielectric sphere with a time-varying radius
E. Panagiotidis, E. Almpanis, N. Papanikolaou, and N. Stefanou, Phys. Rev. B 106, 024101 (2022)
132. Optical transitions and nonreciprocity in spatio-temporally periodic layers of spherical particles
E. Panagiotidis, E. Almpanis, N. Papanikolaou, and N. Stefanou, Adv. Opt. Mater. 11, 2202812 (2023)
133. Light scattering by a periodically time-modulated object of arbitrary shape: The extended boundary condition method
N. Stefanou, I. Stefanou, E. Almpanis, N. Papanikolaou, P. Garg, and C. Rockstuhl, J. Opt. Soc. Am. B 40, 2842 (2023)
134. Two-step homogenization of spatiotemporal metasurfaces using an eigenmode-based approach
P. Garg, A. G. Lamprianidis, S. Rahman, N. Stefanou, E. Almpanis, N. Papanikolaou, B. Verfürth, and C. Rockstuhl, Opt. Mater. Express 14, 549 (2024)